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We present a method for reducing the order of ordinary differential equations satisfying a
given scaling relation (Majorana scale-invariant equations). We also develop a variant of
this method, aimed to reduce the degree of nonlinearity of the lower order equation. Some
applications of these methods are carried out and, in particular, we show that second-
order Emden–Fowler equations can be transformed into first-order Abel equations. The
work presented here is a generalization of a method used by Majorana in order to solve
the Thomas–Fermi equation.
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1. INTRODUCTION

In a recent paper (Esposito, in press) we have described a method, originally
due to Majorana (Espositoet al., in press), able to give the series solution of
the Thomas–Fermi equation (with appropriate boundary conditions) through only
one quadrature. Such a method, giving a (semianalytic) parametric solution of the
considered equation, is based on a particular double change of variables which
transforms the second-order Thomas–Fermi equation into a first-order equation,
whose solution is then obtained by series expansion.

Here we show that the transformation method, used by Majorana in that
particular case, applies to a large class of ordinary differential equations as well,
and prove a simple but general theorem for reducing the order of these equations.

The Majorana idea is a straigthforward generalization of known concepts
and to show this we briefly recall, in the following section, some definitions and
peculiarities of particular differential equations. In Section 3 we then introduce a
new class of differential equations and give the method for reducing the order of
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such equations. In Section 4 a variant of this method is presented and in Section 5
some applications are reported which are particularly relevant in mathematical
physics.

2. PRELIMINARIES

Let us consider a general differential equation of ordern in the independent
variablex and dependent oney:

F
(
x, y, y′, y′′, . . . , y(n)

) = 0, (1)

where a prime denotes differentiation with respect tox.
Equation (1) is said to be anautonomous equationif the variablex does not

appear explicitly:

F
(
x, y, y′, y′′, . . . , y(n)

) = F
(
y, y′, y′′, . . . , y(n)

)
. (2)

In such a case, by changing the set of variables from (x, y(x)) to a novel one
(y, u(y)) through

y′ = u(y)

y′′ = u(y)
du(y)

dy
, (3)

whereu(y) is a given function ofy, the considered differential equation can al-
ways be reduced to an equation of ordern− 1 in the independent variabley and
dependent oneu (Bender and Orszag, 1978; Polyamin and Zaitsev, 1995):

G

(
y, u,

du

dy
,

d2u

dy2
, . . . ,

dn−1u

dyn−1

)
= 0. (4)

The differential equation (1) is, instead,equidimensional-in-xif it is invariant under
the transformationx→ αx for anyα 6= 0:

F
(
αx, y, α−1y′, α−2y′′, . . . , α−ny(n)

) = F
(
x, y, y′, y′′, . . . , y(n)

)
. (5)

This equation can be transformed (Bender and Orszag, 1978; Polyamin and Zaitsev,
1995) into an autonomous equation in the variables (z, y(z)):

G

(
y,

dy

dz
,

d2y

dz2
, . . . ,

dny

dzn

)
= 0, (6)

by changing the independent variable:

x = ez

x
d

dx
= d

dz
. (7)

...
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Thus, equidimensional-in-x equations of ordern can always be reduced to differ-
ential equations of ordern− 1.

Scale-invariant equationssatisfy the property:

F
(
αx, αcy, αc−1y′, αc−2y′′, . . . , αc−ny(n)

) = F
(
x, y, y′, y′′, . . . , y(n)

)
(8)

(i.e. they are invariant forx→ αx, y→ αcy) for any value ofα 6= 0 and some
valuec, and they can be transformed into equidimensional-in-x equations (Bender
and Orszag, 1978; Polyamin and Zaitsev, 1995):

G

(
x, u(x),

du

dx
,

d2u

dx2
, . . . ,

dnu

dxn

)
= 0, (9)

...

with G obeying Eq. (5), by performing the following change of the dependent
variable:

y(x) = xcu(x). (10)

Even in this case, scale-invariant equations of ordern can be thus reduced to
equations of ordern− 1.

Finally, differential equations which are invariant under the transformation
y→ αy for anyα 6= 0 are said to beequidimensional-in-yor homogeneousequa-
tions:

F
(
x, αy, αy′, αy′′, . . . , αy(n)

) = F
(
x, y, y′, y′′, . . . , y(n)

)
. (11)

By changing the dependent variable through

y(x) = eu(x), (12)

it can be transformed into an equation of ordern− 1 in the variables (x, u(x))
(Bender and Orszag, 1978; Polyamin and Zaitsev, 1995):

G

(
x, u(x),

du

dx
,

d2u

dx2
, . . . ,

dn−1u

dxn−1

)
= 0. (13)

Thus, we know that the order of a given differential equation can always be reduced
by one unit if this belongs to one of the four different classes mentioned above.

3. MAJORANA TRANSFORMATION

For future convenience we now consider scale-invariant equations from a
different point of view and introduce another class of differential equations. Equa-
tion (1) is said to beMajorana scale-invariantif it is invariant for x→ αcx, y→
αy for anyα 6= 0 and some valuec:

F
(
αcx, αy, α1−cy′, α1−2cy′′, . . . , α1−ncy(n)

) = F
(
x, y, y′, y′′, . . . , y(n)

)
.

(14)
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It is easy to prove the following proposition:a Majorana scale-invariant equation
of order n can always be reduced to a differential equation of order n− 1. In fact, by
changing the role of the dependent and the independent variablesx→ y, y→ x,
Eq. (1) can be transformed into

G

(
y, x(y),

dx

dy
,

d2x

dy2
, . . . ,

dnx

dyn

)
= 0, (15)

where nowG satisfies the condition (8):

G

(
αy, αcx, αc−1 dx

dy
, αc−2 d2x

dy2
, . . . , αc−n dnx

dyn

)
= G

(
y, x(y),

dx

dy
,

d2x

dy2
, . . . ,

dnx

dyn

)
,

(16)

that is Eq. (15) is scale-invariant and the order can be reduced by one unit.
The concept introduced above is not really a new one, since it is related to

that of scale-invariant equations. However, the reformulation of the problem in
these terms is useful for developing the method for the implementation of order
reduction, which is a generalization of that used by Majorana in the framework of
the Thomas–Fermi equation (Esposito, in press).

We now describe in detail such a method, which carries out the solution of
Eq. (1), withF satisfying Eq. (14), as given in parametric form:{

x = x(t)

y = y(t).
(17)

Let us assume thatx in Eq. (17) depends on the parametert through the
function y(t) and, eventually, ont itself:

x = x(t, y) = x(t, y(t)) = x(t). (18)

Since (x(t), y(t)) in Eq. (17) is a solution of the considered differential equa-
tion (1), supposed to be Majorana scale-invariant, Eqs. (17) and (18) must satisfy
the relation (14), meaning that for anyα 6= 0 and a given valuec we have

x(t, αy) = αcx(t, y). (19)

This implies thatx(t, y) should be an homogeneous function ofy:

x(t, y) = x(t, 1)yc ≡ zyc, (20)

wherez= z(t) can be considered as an arbitrary but given function of the param-
eter t . Note that, in such a way, the only unknown function to be determined in
order to satisfy Eq. (1) isy(t), and the parametric solution (17) can be rewritten,
after Eq. (20), as {

x = z(t)yc(t)

y = y(t),
(21)

with z(t) an arbitrary but given function oft andc is determined by Eq. (14).
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We now have to translate the differential equation (1) fory(x) into an equation
for y(t) in (21). In the following, differentiation with respect tot will be denoted
with a dot, while a prime refers to differentiation with respect tox as above. The
t-derivatives ofx are, from Eq. (21), as follows:

ẋ =
(

ż+ cz
ẏ

y

)
yc ≡ x1(t, y, ẏ)

ẍ =
{

z̈+ 2cż
ẏ

y
+ cz

[
(c− 1)

(
ẏ

y

)2

+ ÿ

y

]}
≡ x2(t, y, ẏ, ÿ)

... (22)

n·
x = · · · = xn(t, y, ẏ, ÿ, . . . ,

n·
y).

Using these expressions we can obtain thex-derivatives ofy, which are
present in Eq. (1), in terms oft , y, and itst-derivatives:

y′ = ẏ

ẋ
≡ y1(t, y, ẏ)

y′′ = ẋ ÿ− ẍ ẏ

ẋ3
≡ y2(t, y, ẏ, ÿ)

... (23)

y(n) = · · · = yn(t, y, ẏ, ÿ, . . . ,
n·
y).

The differential equation fory(t) is then obtained by substituting Eqs. (21),
(22), and (23) into Eq. (1):

F̂(t, y, ẏ, ÿ, . . . ,
n·
y) = 0, (24)

where

F̂(t, y, ẏ, ÿ, . . . ,
n·
y) ≡ F(x(t, y), y, y1(t, y, ẏ), . . . , yn

(
t, y, ẏ, ÿ, . . . ,

n·
y)). (25)

Note that, from Eq. (21), the functionx(t, y) is homogeneous (with respect
to y) of degreec, while the functionsyk(t, y, ẏ, ÿ, . . . ,

k·
y) are homogeneous of

degree 1− kc:

yk(t, αy, α ẏ, α ÿ, . . . , α
k·
y) = α1−kcyk(t, y, ẏ, ÿ, . . . ,

k·
y), (26)

as required for the Majorana property (14) to be satisfied. In particular from this
we also deduce that the differential equation in (24) is equidimensional-in-y, since

F̂(t, αy, α ẏ, α ÿ, . . . , α
n·
y) = F(x(t, αy), αy, y1(t, αy, α ẏ), . . . ,

× yn(t, αy, α ẏ, α ÿ, . . . , α
n·
y))
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= F(αcx(t, y), αy, α1−cy1(t, y, ẏ), . . . , α1−nc

× yn(t, y, ẏ, ÿ, . . . ,
n·
y)) = F(x(t, y), y,

× y1(t, y, ẏ), . . . , yn(t, y, ẏ, ÿ, . . . ,
n·
y))

= F̂(t, y, ẏ, ÿ, . . . ,
n·
y), (27)

that is the functionF̂ satisfies the relation (11). We can then use the transformation
in (12) to reduce the order of the equation. More precisely we set

y(t) = e
∫

u(t) dt, (28)

so that thet-derivatives ofy(t) are as follows:

ẏ = uy≡ u1(u)y

ÿ = (u̇+ u2)y ≡ u2(u, u̇)y

... (29)

n·
y = · · · ≡ un

(
u, u̇, ü, . . . ,

(n−1)·
u

)
y.

The unknown function is nowu(t) and the differential equation of ordern− 1,
obeyed by this quantity, is obtained by substituting Eqs. (29) into Eq. (24):

F̂(t, y, u1y, u2y, . . . , uny) = 0, (30)

or, by using the homogeneity of the function̂F(F̂(t, y, u1y, u2y, . . . , uny) =
F̂(t, 1,u1, u2, . . . , un)) in all points wherey(t) is different from zero we have

F̂(t, 1,u1, u2, . . . , un) = 0. (31)

In terms of the initial functionF in Eq. (1), by noting that

x(t, 1)= z(t)

y1(t, 1,u1) = u1

x1(t, 1,u1)
= u

ż+ cuz
≡ v1(t, u)

y2(t, 1,u1, u2) = x1(t, 1,u1)u2− x2(t, 1,u1, u2)u1

x3
1(t, 1,u1)

= żu̇− z̈u+ (1− 2c)żu2+ c(1− c)zu3

(ż+ cuz)3
≡ v2(t, u, u̇)

...

yn(t, 1,u1, u2, . . . , un) = · · · ≡ vn
(
t, u, u̇, ü, . . . ,

(n−1)·
u

)
(32)
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and using Eq. (25), we have the final equation foru(t):

F
(
z(t), 1,v1(t, u), v2(t, u, u̇), . . . , vn

(
t, u, u̇, ü, . . . ,

(n−1)·
u

)) = 0. (33)

Summarizing,the parametric solution of a Majorana scale-invariant differ-
ential equation of order n has the form as in Eq. (21) with z(t) an arbitrary but given
function of the parameter t and y(t) is written as in Eq. (28), where u(t) satisfies the
differential equation (33) of order n− 1 and the functions vk(t, u, u̇, ü, . . . ,

(k−1)·
u )

are evaluated as in Eqs. (32).

4. THE METHOD OF THE AUXILIARY FUNCTION

Depending also on the choice for the functionz(t), it could happen that
Eq. (33), although is of ordern− 1, is too much hard to be solved. In some
cases the following procedure can be used to reduce the degree of nonlinearity of
Eq. (33).

Let us perform a change of the dependent variable:

u→ v = u

ż+ cuz
. (34)

In this case we have

v1 = v

v2 = (1− cvz)
v̇

ż
+ (1− c)v2, (35)

...

and the functiony(t) in Eq. (21) is now given by

y(t) = e
∫

vż
1−cvz dt, (36)

wherev(t) satisfies the differential equation of ordern− 1:

F

(
z, 1,v, (1− cvz)

v̇

ż
+ (1− c)v2, . . .

)
= 0. (37)

5. APPLICATIONS

As an application of the Majorana method described above, let us consider
the Emden–Fowler equation:

y′′ = xayb (38)
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(with a,b two real numbers), which is of particular interest in mathematical physics
(Bellman, 1953). It satisfies the relation (14) with

c = 1− b

a+ 2
, (39)

so that the method may apply only fora 6= −2. In this case, Eq. (33) for the
Emden–Fowler equation (38) is

żu̇− z̈u+ (1− 2c)żu2+ c(1− c)zu3

(ż+ cuz)3
= za, (40)

with c given in Eq. (39). After some algebra we arrive at the following first-order
equation foru(t):

du

dt
= α(t)+ β(t)u+ γ (t)u2+ δ(t)u3, (41)

where

α(t) = zaż2

β(t) = 3cza+1 ż+ z̈

z
(42)

γ (t) = 3c2 za+2+ 2c− 1

δ(t) = c3 za+3

ż
+ c(c− 1)

z

ż
.

With the Majorana method we have thus transformed the Emden–Fowler
equation (38) into an Abel equation (41) of the first kind. Depending on the par-
ticular problem to be solved, the final equation can be further simplified with an
appropriate choice forz(t), which, however, cannot be chosen equal to a constant
(in this casėz= 0 and Eq. (40) would not be a differential equation foru).

A relevant case is that of Emden–Fowler equation withb = 1 for which, from
Eq. (39), we havec = 0 and Eq. (41) reduces to a simpler Riccati equation:

du

dt
= za ż2+ z̈

z
u− u2, (43)

which for z(t) = t becomes

du

dt
= ta − u2. (44)

Another interesting particular case is that of Thomas–Fermi equation, which
is an Emden–Fowler equation witha = −1/2, b = 3/2:

y′′ = y3/2

√
x
. (45)
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The corresponding first-order equation (41) foru(t), choosing

z(t) = [12(1− t)]2/3, (46)

is

du

dt
= 16

3(1− t)
+
(

8+ 1

3(1− t)

)
u+

(
7

3
− 4t

)
u2− 2

3
t(1− t) u3. (47)

This equation was obtained by Majorana (Espositoet al., in press) in studying
the Thomas–Fermi equation. Emden–Fowler equations can also be analyzed by
using the method of the auxiliary function outlined in the previous section. In this
case, Eq. (37) forv(t) becomes

dv

dt
= ż[za − (1− c)v2]

1− cvz
, (48)

wherec is given in Eq. (39). Note that in this case also we cannot choosez(t) =
constant (̇z= 0) from Eq. (36).

Although Eqs. (48) and (41) are different, in the particular case withb = 1,
and thusc = 0, we again obtain a Riccati equation:

dv

dt
= ż(za − v2). (49)

Instead, following the method of the auxiliary function with

z(t) = 122/3 t2, (50)

the Thomas–Fermi equation can be transformed into the first-order equation

dṽ

dt
= 8

t ṽ2− 1

1− t2ṽ
, (51)

where, for simplicity, we have set ˜v = −4(12−1/3 v). Equation (51) has been solved
using series expansion by Majorana (Espositoet al., in press), and this leads to
a semianalytic general solution for the Thomas–Fermi equation (for details, see
Esposito, in press).

6. CONCLUSIONS AND OUTLOOK

In this paper we have generalized a result, derived by Majorana (Esposito, in
press; Espositoet al., in press) for solving the Thomas–Fermi equation, to a wide
class of (ordinary) differential equations, that of Majorana scale-invariant equa-
tions, as defined in Section 3. We have shown that the search for the parametric
solution of such equations of ordern can be restricted to that for the solution of a
differential equation of ordern− 1 (and to the computation of one integral involv-
ing this solution). However, the main result of this paper is not this proposition,
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which is a direct consequence of known results, but rather the method and the
transformations used to obtain the lower order equation. This has been outlined in
Section 3 and the equation considered has been formally written in Eq. (33). In
some case this differential equation could be highly nonlinear, and so in Section 4
we have developed a variant of the method mentioned above, employing a further
transformation for the dependent variable involved. Some other simplifications,
depending on the particular problem considered, can be achieved with a suitable
choice for the arbitrary functionz(t) present in the parametric solution for the
differential equation.

As an illustration, both methods have been applied to reduce the order of
Emden–Fowler equations in Section 5 and, as a particular case, Thomas–Fermi
equation has been considered as well. Remarkably, by using the method of Sec-
tion 3, we have shown that all second-order Emden–Fowler equations can be
transformed into first-order Abel equations of the first kind. Instead, by using the
method of the auxiliary function reported in Section 4, the Thomas–Fermi equa-
tion can be transformed into a suitable first-order equation which can be solved by
series expansion.

We believe that the transformation methods presented here deserve further
attention in view of their potential applications to scale-invariant differential equa-
tions which are of interest for mathematical physics.
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