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We present a method for reducing the order of ordinary differential equations satisfying a

given scaling relation (Majorana scale-invariant equations). We also develop a variant of

this method, aimed to reduce the degree of nonlinearity of the lower order equation. Some
applications of these methods are carried out and, in particular, we show that second-
order Emden—Fowler equations can be transformed into first-order Abel equations. The
work presented here is a generalization of a method used by Majorana in order to solve
the Thomas—Fermi equation.
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1. INTRODUCTION

In a recent paper (Esposito, in press) we have described a method, originally
due to Majorana (Espositet al, in press), able to give the series solution of
the Thomas—Fermi equation (with appropriate boundary conditions) through only
one quadrature. Such a method, giving a (semianalytic) parametric solution of the
considered equation, is based on a particular double change of variables which
transforms the second-order Thomas—Fermi equation into a first-order equation,
whose solution is then obtained by series expansion.

Here we show that the transformation method, used by Majorana in that
particular case, applies to a large class of ordinary differential equations as well,
and prove a simple but general theorem for reducing the order of these equations.

The Majorana idea is a straigthforward generalization of known concepts
and to show this we briefly recall, in the following section, some definitions and
peculiarities of particular differential equations. In Section 3 we then introduce a
new class of differential equations and give the method for reducing the order of
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such equations. In Sectia!l a \ariant of this method is presented and in Section 5
some applications are reported which are particularly relevant in mathematical
physics.

2. PRELIMINARIES

Let us consider a general differential equation of omdar the independent
variablex and dependent ong

FX, Y. Y. Y ...,y") =0, 1)
where a prime denotes differentiation with respect.to
Equation (1) is said to be aautonomous equatiaifithe variablex does not
appear explicitly:
FOGY Y YY) = F(yy Ly y®). )
In such a case, by changing the set of variables frany(x)) to a novel one
(y, u(y)) through
y = u(y)
du(y)
4 3)

whereu(y) is a given function ofy, the considered differential equation can al-
ways be reduced to an equation of order 1 in the independent variableand
dependent one (Bender and Orszag, 1978; Polyamin and Zaitsev, 1995):

du d?u d"tu
G y Uy —, ——, vy — :O 4
(o dy o ayi) @
The differential equation (1) is, insteatjuidimensional-in-iitis invariant under
the transformatiox — ax for anya # O:
Flax,y, ey, a2y, .., ay") = F(x,y, Y, ¥, ...,Y?).  (5)

This equation can be transformed (Bender and Orszag, 1978; Polyamin and Zaitsev,
1995) into an autonomous equation in the variabtey(2)):

dy d?y d"y
o G a#ram ) <O ©
by changing the independent variable:

y’" = u(y)

X— = —. (7
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Thus, equidimensional-ir-equations of ordem can always be reduced to differ-
ential equations of order — 1.
Scale-invariant equationsatisfy the property:
c-1,, ,c—2

Y, a2y, ety = F(x, Y, YL Y YY) (8)
(i.e. they are invariant fok — ax, y — «Cy) for any value ofe # 0 and some
valuec, and they can be transformed into equidimensional-equations (Bender
and Orszag, 1978; Polyamin and Zaitsev, 1995):

du d?u du 0
dx' dx2""dxn )

F(ax, a®y, a

G<x, u(x), 9)

with G obeying Eq. (5), by performing the following change of the dependent
variable:

y(x) = X°u(x). (10)
Even in this case, scale-invariant equations of omean be thus reduced to
equations of orden — 1.
Finally, differential equations which are invariant under the transformation

y — ay for anya # 0 are said to bequidimensional-in-pr homogeneousqua-
tions:

F(x, ay,ay,ay’,...,ay™) = F(x,y, ¥,y ..., y"). (12)
By changing the dependent variable through
y(x) = e'®, (12)

it can be transformed into an equation of order 1 in the variablesx, u(x))
(Bender and Orszag, 1978; Polyamin and Zaitsev, 1995):

du d?u d"tu
G<X, U(X), &, W’ ceey W) - 0

Thus, we know that the order of a given differential equation can always be reduced
by one unit if this belongs to one of the four different classes mentioned above.

(13)

3. MAJORANA TRANSFORMATION

For future convenience we now consider scale-invariant equations from a
different point of view and introduce another class of differential equations. Equa-
tion (1) is said to béMajorana scale-invarianif it is invariant forx — a°x,y —
ay for anya # 0 and some value:

Fa®, ay, a0y, a2y, . oY) = F(x,y,y, Y/, ..., y").
(14)
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Itis easy to prove the following propositioa:Majorana scale-invariant equation
of order n can always be reduced to a differential equation of orderh In fact, by
changing the role of the dependent and the independent variabley, y — X,
Eq. (1) can be transformed into

dx d?x d"x
G ’ [T I R IR BT = 01
(730 35 G o)
where nowG satisfies the condition (8):
G(ay,ax,a dy,a dyz,,..,a 0 =G y,X(y),dy,dyz,...,dyn ,
(16)

(15)

that is Eq. (15) is scale-invariant and the order can be reduced by one unit.

The concept introduced above is not really a new one, since it is related to
that of scale-invariant equations. However, the reformulation of the problem in
these terms is useful for developing the method for the implementation of order
reduction, which is a generalization of that used by Majorana in the framework of
the Thomas—Fermi equation (Esposito, in press).

We now describe in detail such a method, which carries out the solution of
Eq. (1), withF satisfying Eq. (14), as given in parametric form:

X = X(t)
y =y(t).

Let us assume that in Eq. (17) depends on the parametehrough the
functiony(t) and, eventually, onhitself:

x = Xx(t, y) = x(t, y(t)) = x(t). (18)

Since (t), y(t)) in Eq. (17) is a solution of the considered differential equa-
tion (1), supposed to be Majorana scale-invariant, Egs. (17) and (18) must satisfy
the relation (14), meaning that for any=~ 0 and a given value we have

(17)

X(t, ay) = a®X(t, y). (19)
This implies thai(t, y) should be an homogeneous functionyof
x(t, y) = x(t, 1)y° = zy, (20)

wherez = z(t) can be considered as an arbitrary but given function of the param-
etert. Note that, in such a way, the only unknown function to be determined in
order to satisfy Eq. (1) ig(t), and the parametric solution (17) can be rewritten,
after Eq. (20), as

x = z(t)y“(t)
y =y(),
with z(t) an arbitrary but given function dfandc is determined by Eqg. (14).

(21)
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We now have to translate the differential equation (1ot into an equation
for y(t) in (21). In the following, differentiation with respect towill be denoted
with a dot, while a prime refers to differentiation with respecktas above. The
t-derivatives ofx are, from Eqg. (21), as follows:

X = (z+czy>y = x(t,y,Y)

. .\ 2 .
= {2+Zc'z%+cz|:(c—1)<§) ~|—3—;i|} =x(t, Y, Y, V)

n Y v
X:...:Xn(t,y,y,y,...,y).

Using these expressions we can obtain xhéerivatives ofy, which are
present in Eq. (1), in terms of y, and itst-derivatives:

(22)

Y=¥Ewmww

/7 Xy—X
y 3 y—wamyw

(23)

. . n.
y(n) = - :yn(tvyayaya"'yy)~
The differential equation foy(t) is then obtained by substituting Egs. (21),
(22), and (23) into Eq. (1):
~ e n-
Fty, v, V,...,Y)=0, (24)
where
k) . e n. . - .. n.
FEOY, ¥ ¥ V) = FXA Y, Y it Y 9)s - o6 Vs V800 Y)). (25)
Note that, from Eq. (21), the functiox(t, y) is homogeneous (with respect

to y) of degreec, while the functionsy(t,y, Vv, V, ..., y) are homogeneous of
degree - kc:
. . k- -~ Lo k-
Ve(t, ey, ay, oy, ...,aY) =y (t, v, ¥, V. ..., Y), (26)

as required for the Majorana property (14) to be satisfied. In particular from this
we also deduce that the differential equation in (24) is equidimensiongldimce

Bt ay, ay,a, ..., a Y) = F(X(t, ay), ay, i(t, ay, ay), . ..,
x ¥n(t, ay, ay,ay, ..., o n)’))
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= F(acx(t7 y)’ ay, al_cyl(tl y! y)l AR | al_nc

X Yn(t: yr yr y! st 9)) = F(X(tr y)v yv

X yl(t1 Y, y)! ey Yn(ta Y, yr y! e r)]/))
—EOLY. YY), 7

that is the functior- satisfies the relation (11). We can then use the transformation
in (12) to reduce the order of the equation. More precisely we set

y(t) = e/ uO, (28)
so that the-derivatives ofy(t) are as follows:
y = uy=uy(u)y
¥ = (U+u?)y = uy(u, )y

(29)

V= =uuua,... "a")y.

The unknown function is now(t) and the differential equation of ordar— 1,
obeyed by this quantity, is obtained by substituting Egs. (29) into Eq. (24):

F(t,y, u1y, uzy, ..., uny) =0, (30)
or, by using the homogeneity of the functidh(F(t, y, usy, Uzy, ..., Uny) =
F(t, 1,us, Uy, ..., uy)) in all points wherey(t) is different from zero we have

F(t,1,ug, Uy, ..., Un) = 0. (31)

In terms of the initial functior in Eq. (1), by noting that
X(t, 1) = z(t)

uq _ u
xi(t,1,u1)  z+cuz
Xa(t, 1, up)uz — Xa(t, 1,ug, Uz)ug

x3(t, 1,uq)

_ 20— 2u+ (1 - 2027 + ¢(1 - c)zP
B (z+cuz?

ya(t, 1L,u1) = = va(t, u)

Yo(t, 1,ug, up) =

= Vo(t, u, U)

Ya(t, 1,Uz, Uz, .oy Up) = -+ = Va(t,u, 0, 0, . ..., AT ) (32)
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and using Eq. (25), we have the final equationui:

(n—1)
u

F(z(t), 1,va(t, u), vo(t, u, 1), ..., vo(t,u, 0, G, ..., )) =0. (33)

Summarizingthe parametric solution of a Majorana scale-invariant differ-
ential equation of order n has the form asin Eq. (21) with z(t) an arbitrary but given
function of the parameter t and y(t) is written as in Eq. (28), where u(t) sgtl%ﬁes the
differential equation (33) of order r- 1 and the functionsp(t, u, U, 0,
are evaluated as in Egs. (32)

4. THE METHOD OF THE AUXILIARY FUNCTION

Depending also on the choice for the functieft), it could happen that
Eqg. (33), although is of ordem — 1, is too much hard to be solved. In some
cases the following procedure can be used to reduce the degree of nonlinearity of
Eq. (33).

Let us perform a change of the dependent variable:

u

U—V=- . (34)
Z+cuz
In this case we have
Vi =V
v
Vo =(1— CVZ)E + (1 —c)v?, (35)

and the functiory(t) in Eq. (21) is now given by
y(t) = ef T, (36)

wherev(t) satisfies the differential equation of order 1:

F <z, 1,v, (1—cvz)¥z +(1—C)v2,...) =0. (37)

5. APPLICATIONS

As an application of the Majorana method described above, let us consider
the Emden—Fowler equation:

y' =x%y" (38)
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(with a, btwo real numbers), which is of particular interest in mathematical physics
(Bellman, 1953). It satisfies the relation (14) with

1-b
‘Tarz
so that the method may apply only far# —2. In this case, Eq. (33) for the
Emden—Fowler equation (38) is
70— 2u+ (1 — 20)z% 4 ¢(1 — c)z B
(z+ cuz? -

with ¢ given in Eq. (39). After some algebra we arrive at the following first-order
equation foru(t):

(39)

z2, (40)

= o)+ AOU+ O + 500, (41)
where
alt) = 27

B(t) = 3cA 7+ ;

(42)
y(t) =322+ 2c—1
Za+3 z
8(t) = 2= c(c—1)=.
) -t ( )Z

With the Majorana method we have thus transformed the Emden—Fowler
equation (38) into an Abel equation (41) of the first kind. Depending on the par-
ticular problem to be solved, the final equation can be further simplified with an
appropriate choice fazr(t), which, however, cannot be chosen equal to a constant
(in this casez = 0 and Eq. (40) would not be a differential equation dyr

Arelevant case is that of Emden—Fowler equation With 1 for which, from
Eq. (39), we have = 0 and Eg. (41) reduces to a simpler Riccati equation:

du_ ., 2 2
— “u-—u? 43
at bl Zu u (43)
which for z(t) = t becomes
du
— =t -2 44
at u (44)

Another interesting particular case is that of Thomas—Fermi equation, which
is an Emden—Fowler equation with= —1/2,b = 3/2:
y3/2

y' = W (45)
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The corresponding first-order equation (41) di¢t), choosing
2(t) = [12(1 - )73, (46)

du 16 1 7 2
— = 8+ —— — —4t)u?—Zt@d-t)ud. 47
dt 3(1—t)+( +3(1—t))”+<3 )” st -ou. (40
This equation was obtained by Majorana (Esposit@l., in press) in studying
the Thomas—Fermi equation. Emden—Fowler equations can also be analyzed by

using the method of the auxiliary function outlined in the previous section. In this
case, Eq. (37) fov(t) becomes
dv 72— (1—-cV7
dt 1—cvz
wherec is given in Eqg. (39). Note that in this case also we cannot chag}e-
constantf = 0) from Eq. (36).
Although Egs. (48) and (41) are different, in the particular case ith1,
and thux = 0, we again obtain a Riccati equation:

, (48)

S(5a 2
— = — V). 49
G = 42 =) (49)
Instead, following the method of the auxiliary function with
zZ(t) = 1223t (50)
the Thomas—Fermi equation can be transformed into the first-order equation
dv 02 — 1
-8 51
dt 1129 (1)

where, for simplicity, we have set= —4(12-1/3v). Equation (51) has been solved
using series expansion by Majorana (Esposital., in press), and this leads to

a semianalytic general solution for the Thomas—Fermi equation (for details, see
Esposito, in press).

6. CONCLUSIONS AND OUTLOOK

In this paper we have generalized a result, derived by Majorana (Esposito, in
press; Espositet al,, in press) for solving the Thomas—Fermi equation, to a wide
class of (ordinary) differential equations, that of Majorana scale-invariant equa-
tions, as defined in Section 3. We have shown that the search for the parametric
solution of such equations of ordercan be restricted to that for the solution of a
differential equation of order — 1 (and to the computation of one integral involv-
ing this solution). However, the main result of this paper is not this proposition,
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which is a direct consequence of known results, but rather the method and the
transformations used to obtain the lower order equation. This has been outlined in
Section 3 and the equation considered has been formally written in Eg. (33). In
some case this differential equation could be highly nonlinear, and so in Section 4
we have developed a variant of the method mentioned above, employing a further
transformation for the dependent variable involved. Some other simplifications,
depending on the particular problem considered, can be achieved with a suitable
choice for the arbitrary functiom(t) present in the parametric solution for the
differential equation.

As an illustration, both methods have been applied to reduce the order of
Emden—Fowler equations in Section 5 and, as a particular case, Thomas—Fermi
equation has been considered as well. Remarkably, by using the method of Sec-
tion 3, we have shown that all second-order Emden—Fowler equations can be
transformed into first-order Abel equations of the first kind. Instead, by using the
method of the auxiliary function reported in Section 4, the Thomas—Fermi equa-
tion can be transformed into a suitable first-order equation which can be solved by
series expansion.

We believe that the transformation methods presented here deserve further
attention in view of their potential applications to scale-invariant differential equa-
tions which are of interest for mathematical physics.
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